
DATA SCIENCE LEVERAGING GPU'S
BILL VEENHUIS, PRINCIPAL ARCHITECT

AGENDA

GPU – more than an accelerator

RAPIDS – ETL, operationalized the data

CuPY – for the love of Pandas, NumPy & SciPy

Merlin – Recommenders

GPUS

4

SMALL CHANGES, BIG SPEED-UP
Application Code

+

GPU CPU
5% of Code

Compute-Intensive Functions

Rest of Sequential
CPU Code

5

NVIDIA A100 80GB
Supercharging The World’s Highest
Performing AI Supercomputing GPU

80GB HBM2e
For largest datasets

and models

2TB/s +
World’s highest memory bandwidth

to feed the world’s fastest GPU

Multi-Instance GPU

3rd Gen NVLink

3rd Gen Tensor Core

RAPIDS

Pre-Processing
pandas

Data Preparation VisualizationModel Training

Machine Learning

scikit-learn
Graph Analytics

NetworkX

Deep Learning
TensorFlow, PyTorch,

MxNet

Visualization
matplotlib

Apache Spark / Dask

CPU Memory

OPEN SOURCE SOFTWARE HAS DEMOCRATIZED DATA
SCIENCE

Highly Accessible, Easy to Use Tools Abstract Complexity

ACCELERATED DATA SCIENCE WITH RAPIDS
Powering Popular Data Science Ecosystems with NVIDIA GPUs

Pre-Processing
cuIO & cuDF

Data Preparation VisualizationModel Training

Machine Learning
cuML, XGBoost

Graph Analytics
cuGraph

Deep Learning
TensorFlow,

PyTorch, MxNet

Visualization
cuXfilter, pyViz,

Plotly

Dask

GPU Memory

Spark / Dask

MINOR CODE CHANGES FOR MAJOR BENEFITS
Abstracting Accelerated Compute through Familiar Interfaces

>>> import pandas as pd

>>> df = pd.read_csv("filepath")

spark.sql("""

select

order

count(*) as order_count

from

orders""")

>>> from sklearn.ensemble

import

RandomForestClassifier

>>> clf =

RandomForestClassifier()

>>> clf.fit(x, y)

>>> import networkx as nx

>>> page_rank =

nx.pagerank(graph)

>>> import cudf

>>> df = cudf.read_csv("filepath")

spark.conf.set("spark.plugins

","com.nvidia.spark.SQLPlugin")

spark.sql("""

select

order

count(*) as order_count

from

orders""")

>>> from cuml.ensemble import

RandomForestClassifier

>>> cuclf =

RandomForestClassifier()

>>> cuclf.fit(x, y)

>>> import cugraph

>>> page_rank =

cugraph.pagerank(graph)

GPU

CPU

pandas CPU Spark scikit-learn NetworkX

cuDF GPU Spark cuML cuGraph

Average Speed-Ups: 150x Average Speed-Ups: 250xAverage Speed-Ups: 10x Average Speed-Ups: 50x

LIGHTNING-FAST END-TO-END PERFORMANCE
Reducing Data Science Processes from Hours to Seconds

CUDF USABILITY IMPROVEMENTS
Making developer life a bit easier

def custom_add(row):

if row["a"] > 0:

return row["a"] + row["b"]

elif row["a"] is cudf.NA:

return 99

else:

return row["a"]

df["out"] = df.apply(custom_add)

df.head()

a b out

0 -0.691674315 979 -0.691674

1 0.480099393 1005 1005.480099

2 <NA> 1026 99.000000

3 0.067478787 1026 1026.067479

4 -0.970850075 960 -0.970850

● Expanded IO Readers/Writers and data types (Decimal,

List, Struct, Nested, etc.)

● Significant API expansion to empower Pandas and Dask

users - 41 new Pandas-compatible APIs added

● New Pandas-like User Defined Function interface

● Improved and growing functionality for time-series

analysis

TIME SERIES FUNCTIONS
cuDF masters the fourth dimension

● API additions for convenient time-series analysis:

date_range() for timestamp generation, interpolate() for fast

linear interpolation

● Grouping by a time frequencies with Grouper, as well as

Groupby.{corr, std, var, diff} and Groupby.Rolling.{std, var}

● Upsampling and downsampling of time-series data via

resample()

● Now calendar-aware! Functions like isocalendar(), quarter(),

dayofweek() now available. DateOffsets with non-fixed

frequencies like month and year supported.

>>> df

ts value

0 2000-01-01 00:00:02 1

1 2000-01-01 00:00:07 2

2 2000-01-01 00:00:02 3

3 2000-01-01 00:00:15 4

4 2000-01-01 00:00:05 5

5 2000-01-01 00:00:09 6

>>> grouper = cudf.Grouper(key="ts", freq="4s")

>>> df.groupby(grouper).mean()

value

ts

2000-01-01 00:00:00 2.0

2000-01-01 00:00:04 3.5

2000-01-01 00:00:08 6.0

2000-01-01 00:00:12 4.0

● Support for CUDA Minor Version

compatibility starting from the 21.12

release

● No longer need to update your CUDA driver

or toolkit to use RAPIDS with CUDA 11 and

driver >= 450.80.02.

● Enables seamless compatibility with other

GPU libraries, like PyTorch and Tensorflow

CUDA ENHANCED COMPATIBILITY
RAPIDS Ecosystem Integration

NEW PLATFORMS, NEW CONTAINERS
RAPIDS Going Everywhere

● Windows Subsystem for Linux in 21.10 (experimental)

● ARM SBSA support in 21.10 (experimental)

● CUDA 11.5 support in 21.12

● NVIDIA NGC optimized containers for PyTorch and

TensorFlow now include RAPIDS libraries

HOW TO GET STARTED WITH RAPIDS
A Variety of Ways to Get Up & Running

More about RAPIDS Self-Start Resources Discussion & Support

● Learn more at RAPIDS.ai

● Read the API docs

● Check out the RAPIDS blog

● Read the NVIDIA DevBlog

● Get started with RAPIDS

● Deploy on the Cloud today

● Start with Google Colab

● Look at the cheat sheets

● Check the RAPIDS GitHub

● Use the NVIDIA Forums

● Reach out on Slack

● Talk to NVIDIA Services

@RAPIDSai
https://github.com/rapidsai https://rapids-goai.slack.com/join https://rapids.ai

Get Engaged

https://rapids.ai/
https://docs.rapids.ai/
https://medium.com/rapids-ai
https://developer.nvidia.com/blog/
https://rapids.ai/start.html
https://rapids.ai/cloud
https://colab.research.google.com/drive/1rY7Ln6rEE1pOlfSHCYOVaqt8OvDO35J0#forceEdit=true&offline=true&sandboxMode=true
https://www.nvidia.com/en-us/ai-data-science/resources/rapids-kit/
https://github.com/rapidsai
https://forums.developer.nvidia.com/c/ai-data-science/86
https://rapids-goai.slack.com/join
https://www.nvidia.com/en-us/ai-data-science/professional-services/
https://twitter.com/RAPIDSai
https://github.com/rapidsai
https://join.slack.com/t/rapids-goai/shared_invite/zt-p9c99spf-D1UbbjnsBbKK2~czK7IJuQ
https://rapids.ai/

CUPY

17

GETTING STARTED

• “The fundamental package for scientific computing with Python”

• N-Dimensional array and numerical computing

• API closely matched by several Python projects (CuPy, Dask, JAX, and others)

NumPy

18

GETTING STARTED

• “The fundamental package for CUDA scientific computing with Python”

• N-Dimensional array and numerical computing

• Matches the NumPy API

• Extrapolates NumPy API where necessary, e.g., sparse computing

CuPy

19

GETTING STARTED

• CuPy Implements NumPy-compatible API

NumPy L2 example:

>>> import numpy as np

>>> a_cpu = np.array([1,2,3])

>>> a_cpu

array([1, 2, 3])

>>> type(a_cpu)

<class 'numpy.ndarray'>

>>>

>>> l2_cpu = np.linalg.norm(a_cpu)

>>> l2_cpu

3.7416573867739413

Array Basics

CuPy equivalent:

>>> import cupy as cp

>>> a_gpu = cp.array([1,2,3])

>>> a_gpu

array([1, 2, 3])

>>> type(a_gpu)

<class 'cupy.core.core.ndarray'>

>>>

>>> l2_gpu = cp.linalg.norm(a_gpu)

>>> l2_gpu

array(3.74165739)

>>>

>>> # Note the output here is a CuPy array

>>> # and not a Python float, intentionally

>>> # avoiding implicit D2H copy

20

GETTING STARTED

• CuPy Implements NumPy-compatible API

NumPy transpose matrix-multiply example:

>>> import numpy as np

>>> a_cpu = np.array([1,2,3])

>>> a_cpu

array([1, 2, 3])

>>> a_cpu * a_cpu.T # 1D array transpose

array([1, 4, 9])

>>>

>>> a_cpu = a_cpu.reshape((1, 3))

>>> a_cpu # This is now a 2D array

array([[1, 2, 3]])

>>> a_cpu * a_cpu.T

array([[1, 2, 3],

[2, 4, 6],

[3, 6, 9]])

Array Basics

CuPy equivalent:

>>> import cupy as cp

>>> a_gpu = cp.array([1,2,3])

>>> a_gpu

array([1, 2, 3])

>>> a_gpu * a_gpu.T # 1D array transpose

array([1, 4, 9])

>>>

>>> a_gpu = a_gpu.reshape((1, 3))

>>> a_gpu # This is now a 2D array

array([[1, 2, 3]])

>>> a_gpu * a_gpu.T

array([[1, 2, 3],

[2, 4, 6],

[3, 6, 9]])

21

GETTING STARTED

• CuPy is single-GPU

• Device can be set for the default context or temporarily for local context only

Default is Device 0

a_gpu0 = cp.array([1,2,3])

Switch to Device 1

cp.cuda.Device(1).use()

a_gpu1 = cp.array([1,2,3])

Temporarily switch to Device 2

with cp.cuda.Device(2):

a_gpu2 = cp.array([1,2,3])

Back to Device 1

b_gpu1 = cp.array([1,2,3])

Choosing Device

22

GETTING STARTED

• Data movement functions are not part of NumPy’s API

a_cpu = np.array([1,2,3])

Copy a_cpu to array a_gpu0 in device 0

with cp.cuda.Device(0):

a_gpu0 = cp.asarray(a_cpu)

Copy a_gpu0 to array a_gpu1 in device 1

with cp.cuda.Device(1):

a_gpu1 = cp.asarray(a_gpu0)

Copy a_gpu1 back to array b_cpu on host

b_cpu = cp.asnumpy(a_gpu1)

b_cpu = a_gpu1.get() # Equivalent to cp.asnumpy(a_gpu1)

Data Transfer

23

LOW LEVEL CUDA SUPPORT

• Default memory pool caches allocated memory blocks for later reuse

CUPY_GPU_MEMORY_LIMIT=1073741824 python

>>> import cupy as cp

>>> mempool = cp.get_default_memory_pool()

>>> mempool.get_limit()

1073741824

>>> with cp.cuda.Device(1):

... mempool.set_limit(2*1024**3)

... mempool.get_limit()

...

2147483648

>>> with cp.cuda.Device(0):

... mempool.get_limit()

...

1073741824

Memory Management

MERLIN

MERLIN IS AN END-2-END LIBRARY FOR
GPU-ACCELERATED RECOMMENDER SYSTEMS

1)

2)

DATA LAKE

TRITON

USER QUERY

10

RECOMMENDATIONS
CANDIDATE

GENERATION
RANKING

O(1000)

O(Billions)

EMBEDDINGS

INFERENCETRAININGDATA
LOADER

ETL

NVTABULAR

HUGECTR

NVTABULAR

VALIDATION

MODEL

ANALYSIS

RAPIDS RAPIDS CUDNN RAPIDS

BUILDING RECOMMENDER SYSTEMS END-TO-END IS COMPLEX AND REQUIRES 4
STAGES

Retrieval Filtering Scoring Ordering

Generating ~1000-10000
candidates used for
recommendations from
all available items.

Scoring all available
items is computential too
expensive, therefore only
a subset should be scored

Removing invalid
candidates

For example, products
out of stock

More advanced models
scores the candidates and
determines the best
recommendations

Reordering the
recommendations by
other business logic

NVIDIA MERLIN

Retrieval Filtering Scoring Ordering

Stage which is often referred to
for Recommender Systems

EXAMPLES FOR THE 4 STAGE RECOMMENDER SYSTEMS

Retrieval Filtering Scoring Ordering

Music

Discovery

Social

Media

Online

Store

Streaming

Service

Find similar songs
based on nearest
neighbour search

Remove tracks users
listen before

Predict likelihood
user will listen to the
song

Trade-Off between
score, similarity,
BPM, etc

Find new posts in
user’s network

Remove posts from
blocked and muted
users

Predict likelihood
user will interact
with it

Change order that
adjust posts are from
different authors

Find items which are
usually co-purchased

Remove items which
are out of stock

Predict likelihood
user will purchase the
item

Reorder items based
on price points

Find items based on
different
rows/shelves/topics

Remove items which
are not available for
user’s country

Predict user’s stream
time per item

Organize
recommendations to
fit genre distributions

MERLIN SPEEDS UP THE ENTIRE PIPELINE

ETL

M
in

u
te

s

Optimized
Spark

(4x CPU node)

NVTabular ETL
(1xA100)

NVIDIA Merlin provides 9-24x speed-up in ETL+Training+Inference RecSys models and easily scales to multiple GPUs

Accelerating Training
Scaling Accelerated

Training
Inference

Tensorflow
Data loader
(1x A100)

NVTabular
Data loader
(1x A100)

CPU cluster
(4x nodes)

HugeCTR
(1x DGX-A100)

21x 9x 24x 18x

HugeCTRNVTabular Triton

Speedup

TF/PyT Plugins

M
in

u
te

s

M
in

u
te

s

A
v
g
.

L
a
te

n
c
y
 i
n
 M

S

PyTorch
(2x CPU node)

HugeCTR
(1x A100)

THANK YOU

