DATA SCIENCE LEVERAGING GPU'S BILL VEENHUIS, PRINCIPAL ARCHITECT

DVIDA®

AGENDA

GPU - more than an accelerator

RAPIDS - ETL, operationalized the data

CuPY - for the love of Pandas, NumPy & SciPy

Merlin - Recommenders

GPUS

GPU

SMALL CHANGES, BIG SPEED-UP **Application Code**

Rest of Sequential CPU Code

NVIDIA A100 80GB Supercharging The World's Highest Performing Al Supercomputing GPU

80GB HBM2e For largest datasets and models

2TB/s + World's highest memory bandwidth to feed the world's fastest GPU

3rd Gen Tensor Core

Multi-Instance GPU

3rd Gen NVLink

RAPIDS

OPEN SOURCE SOFTWARE HAS DEMOCRATIZED DATA SCIENCE Highly Accessible, Easy to Use Tools Abstract Complexity

Data Preparation

Pre-Processing pandas

Machine Learning scikit-learn

Graph Analytics NetworkX

CPU Memory

Data Preparation

Spark / Dask

Pre-Processing culO & cuDF

ACCELERATED DATA SCIENCE WITH RAPIDS Powering Popular Data Science Ecosystems with NVIDIA GPUs

MINOR CODE CHANGES FOR MAJOR BENEFITS Abstracting Accelerated Compute through Familiar Interfaces

LIGHTNING-FAST END-TO-END PERFORMANCE Reducing Data Science Processes from Hours to Seconds

Expanded IO Readers/Writers List, Struct, Nested, etc.)

. Significant API expansion to e users - 41 new Pandas-comp

. New Pandas-like User Define

Improved and growing function analysis

CUDF USABILITY IMPROVEMENTS Making developer life a bit easier

	def
s and data types (Decimal,	Ì
empower Pandas and Dask Datible APIs added	E
ed Function interface	df[' df.l
onality for time-series	5 0 - 1
	2

```
custom_add(row):
if row["a"] > 0:
  return row["a"] + row["b"]
elif row["a"] is cudf.NA:
  return 99
else:
  return row["a"]
```

```
["out"] = df.apply(custom_add)
head()
```

```
b
                out
  -0.691674315
               979
                     -0.691674
  0.480099393 1005
                     1005.480099
      <NA>
            1026 99.000000
3 0.067478787
               1026
                     1026.067479
4 -0.970850075
               960
                     -0.970850
```


- . API additions for convenient time-s date_range() for timestamp genera linear interpolation
- Grouping by a time frequencies wit Groupby.{corr, std, var, diff} and G
- . Upsampling and downsampling of t⁻ resample()
- . Now calendar-aware! Functions like dayofweek() now available. DateOf frequencies like month and year supported.

TIME SERIES FUNCTIONS cuDF masters the fourth dimension

series analysis:	>>> df
ation. interpolate() for fast	
	0 2000
	1 2000
	2 2000
th Craupar as wall as	3 2000
in Grouper, as well as	4 2000
roupby.Rolling.{std, var}	5 2000
	>>> gr
ime-series data via	>>> df
	ts
e isocalendar(), quarter(),	2000-0
ffsets with non-fixed	2000-0
	2000-0
innartad	2000 (

```
ts value
0-01-01 00:00:02
0-01-01 00:00:07
                   2
0-01-01 00:00:02
                   3
0-01-01 00:00:15
                   4
0-01-01 00:00:05
                   5
0-01-01 00:00:09 6
```

```
rouper = cudf.Grouper(key="ts", freq="4s")
f.groupby(grouper).mean()
```

value

```
01-01 00:00:00 2.0
     01-01 00:00:04 3.5
     01-01 00:00:08 6.0
2000-01-01 00:00:12 4.0
```


CUDA ENHANCED COMPATIBILITY RAPIDS Ecosystem Integration

- Support for CUDA Minor Version compatibility starting from the 21.12 release
- . No longer need to update your CUDA driver or toolkit to use RAPIDS with CUDA 11 and driver >= 450.80.02.
- . Enables seamless compatibility with other GPU libraries, like PyTorch and Tensorflow

RAPIDS PyTorch

TensorFlow

NEW PLATFORMS, NEW CONTAINERS **RAPIDS Going Everywhere**

0-0 Windows 11

Accelerated with

O PyTorch

. Windows Subsystem for Linux in 21.10 (experimental)

CUDA 11.5 support in 21.12

NVIDIA NGC optimized containers for PyTorch and TensorFlow now include RAPIDS libraries

Accelerated with

- . ARM SBSA support in 21.10 (experimental)

More about RAPIDS

- Learn more at RAPIDS.ai
- Read the API docs
- Check out the RAPIDS blog
- Read the NVIDIA DevBlog

@RAPIDSai

HOW TO GET STARTED WITH RAPIDS A Variety of Ways to Get Up & Running

Self-Start Resources

- Get started with RAPIDS
- Deploy on the Cloud today
- Start with Google Colab
- Look at the cheat sheets

Get Engaged

https://github.com/rapidsai

https://rapids-goai.slack.com/join

Discussion & Support

- Check the RAPIDS GitHub
- Use the NVIDIA Forums
- Reach out on Slack
- Talk to NVIDIA Services

RAPIDS

https://rapids.ai

N-Dimensional array and numerical computing

GETTING STARTED NumPy

- "The fundamental package for scientific computing with Python"
- API closely matched by several Python projects (*CuPy*, Dask, JAX, and others)

N-Dimensional array and numerical computing Matches the NumPy API

GETTING STARTED CuPy

"The fundamental package for CUDA scientific computing with Python"

Extrapolates NumPy API where necessary, e.g., sparse computing

18

CuPy Implements NumPy-compatible API

NumPy L2 example: >>> import numpy as np >>> a cpu = **np**.array([1,2,3]) >>> a cpu array([1, 2, 3]) >>> type(a cpu) <class 'numpy.ndarray'> >>>>>> 12 cpu = **np**.linalg.norm(a cpu) >>> 12 cpu 3.7416573867739413

GETTING STARTED Array Basics

CuPy equivalent:

>>> import cupy as cp >>> a gpu = **cp**.array([1,2,3]) >>> a_gpu array([1, 2, 3]) >>> type(a gpu) <class 'cupy.core.core.ndarray'> >>>>>> 12 gpu = **cp**.linalg.norm(a gpu) >>> 12 gpu array(3.74165739)>>>>>> # Note the output here is a CuPy array >>> # and not a Python float, intentionally >>> # avoiding implicit D2H copy

CuPy Implements NumPy-compatible API

NumPy transpose matrix-multiply example:

>>> import numpy as np >>> a cpu = **np**.array([1,2,3]) >>> a cpu array([1, 2, 3]) >>> a cpu * a cpu.T # 1D array transpose array([1, 4, 9]) >>>>>> a cpu = a cpu.reshape((1, 3)) >>> a cpu # This is now a 2D array array([[1, 2, 3]]) >>> a cpu * a cpu.T array([[1, 2, 3], [2, 4, 6], [3, 6, 9]])

GETTING STARTED Array Basics

CuPy equivalent: >>> import cupy as cp >>> a gpu = **cp**.array([1,2,3]) >>> a_gpu array([1, 2, 3]) >>> a gpu * a gpu.T # 1D array transpose array([1, 4, 9]) >>>>>> a gpu = a gpu.reshape((1, 3)) >>> a gpu # This is now a 2D array array([[1, 2, 3]]) >>> a gpu * a gpu.T array([[1, 2, 3], [2, 4, 6], [3, 6, 9]])

CuPy is single-GPU

Default is Device 0 a gpu0 = cp.array([1, 2, 3])

Switch to Device 1 cp.cuda.Device(1).use() a gpu1 = cp.array([1, 2, 3])

Temporarily switch to Device 2 with cp.cuda.Device(2): a gpu2 = cp.array([1,2,3])

Back to Device 1 b gpu1 = cp.array([1,2,3])

GETTING STARTED Choosing Device

Device can be set for the default context or temporarily for local context only

Data movement functions are not part of NumPy's API a cpu = np.array([1, 2, 3])

Copy a_cpu to array a_gpu0 in device 0 with cp.cuda.Device(0): a gpu0 = cp.asarray(a cpu)

Copy a gpu0 to array a gpu1 in device 1 with cp.cuda.Device(1): a gpul = cp.asarray(a gpu0)

Copy a gpul back to array b cpu on host b cpu = cp.asnumpy(a gpu1) $b_cpu = a gpul.get()$

GETTING STARTED Data Transfer

Equivalent to cp.asnumpy(a gpul)

CUPY_GPU MEMORY LIMIT=1073741824 python >>> import cupy as cp >>> mempool = cp.get default memory pool() >>> mempool.get limit() 1073741824 >>> with cp.cuda.Device(1): mempool.set limit(2*1024**3) • • • mempool.get limit() • • • • • • 2147483648 >>> with cp.cuda.Device(0): mempool.get limit() • • • • • • 1073741824

LOW LEVEL CUDA SUPPORT Memory Management

Default memory pool caches allocated memory blocks for later reuse

MERLIN

MERLIN IS AN END-2-END LIBRARY FOR **GPU-ACCELERATED RECOMMENDER SYSTEMS**

BUILDING RECOMMENDER SYSTEMS END-TO-END IS COMPLEX AND REQUIRES 4 STAGES

Retrieval

Generating ~1000-10000 candidates used for recommendations from all available items.

Scoring all available items is computential too expensive, therefore only a subset should be scored

out of stock

^r-- Stage which is often referred to --- for Recommender Systems

EXAMPLES FOR THE 4 STAGE RECOMMENDER SYSTEMS

Retrieval

Music Discovery Find similar songs based on nearest neighbour search

Social Media

Find new posts in user's network

Online Store

Find items which a usually co-purchase

Streaming Service

Find items based o different rows/shelves/topics

Filtering

Remove tracks users listen before

Predict likelihood user will listen to the song

Remove posts from blocked and muted users

Predict likelihood user will interact with it

ed	Remove items which are out of stock	user will item
n	Remove items which	Predict ι

are not available for user's country

user's stream time per item

Scoring

Ordering

Trade-Off between score, similarity, BPM, etc

Change order that adjust posts are from different authors

Predict likelihood purchase the

Reorder items based on price points

Organize recommendations to fit genre distributions

MERLIN SPEEDS UP THE ENTIRE PIPELINE TF/PyT Plugins HugeCTR **Scaling Accelerated** Accelerating Training Training 50 20 48.26 40 15 15.8 S 30 Minutes Minut 50 10 5 10 1.68 Tensorflow **NVTabular** CPU cluster Data loader Data loader (4x nodes) (1x A100) (1x A100) **24x 9**x

NVTabular

NVIDIA Merlin provides 9-24x speed-up in ETL+Training+Inference RecSys models and easily scales to multiple GPUs

THANK YOU

